

ES TU MUNDO, CONSTRÚYELO,™

Environmental Product Declaration **Cement board**

Environmental Product Declaration

Program: The International EPD® System

EPD registered through the fully aligned regional program/hub:

Program operator: EPD Latin America

Regional Hub: EPD Latin America

EPD registration number: S-P-01424

Issue date: 2019-08-30

Validity date: 2024-08-27

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

Revision date: 2019-08-28
Geographical scope: Mexico

Content

1. USG	3
Innovation	3
Safety	3
Sustainability	3
2. General Information	4
3. Product Description	5
4. Content declaration	6
5. LCA Rules	6
5.1 Declared unit	6
5.2 System boundary	6
5.3 Description of the manufacturing process	9
5.4 Assumptions	9
5.5 Cut-off criteria	10
5.6 Allocation	10
5.7 Time representativeness	10
5.8 Data quality assessment	10
6. Environmental performance	14
6.1 Use of resources	14
6.2 Potential environmental impact	15
6.3 Waste production	19
7. Verification and registration	25
8. Contact information	20
9. References	21

1. USG

USG has been a leading manufacturer of building products and innovative solutions for more than 115 years. Our wall, ceiling, flooring, sheathing and roofing products provide the solutions that enable customers to build the outstanding spaces where people live and do business.

Since 1902, USG has led the manufacturing industry with innovations and products that set new standards for design, productivity and performance for customers all over the globe.

In 2017, we celebrated the 100th anniversary of USG's iconic SHEETROCK® Brand, the landmark product that revolutionized interior construction and enabled the lightweight, fireproof walls we still build today. We are a leading manufacturer of building products and innovative solutions, including wall, ceiling, flooring, sheathing and roofing products, that help the construction industry to build stronger, safer and more sustainable communities.

Innovation:

We manufacture high-quality products that solve real-world challenges and meet our rigorous safety standards. When we look at the issues that our customers and others in the manufacturing industry face, such as labor shortages, water scarcity, or time management, we think about the science, engineering, and technology that is needed to solve them.

USG holds more than 2,400 active U.S. and international patents that represent innovations that improve the way building materials are used in the places we live and do business.

Our Corporate Innovation Center (CIC) is a state-of-the-art research facility committed to develop new-to-market products and to improve our existing portfolio.

Safetv:

Safety is our first and most important core value. USG has been committed to the safety of our employees, customers and the communities where we live and do business since we documented our first safety rules more than 100 years ago. In 2016, we earned the National Safety Council's Robert W. Campbell award, one of the world's most respected celebrations of safety-first culture, for our excellence in environmental, health and safety (EHS) management.

Sustainability:

Our vision is to be the world leader in building products and innovative solutions that enable our customers to create sustainable, inspirational and inviting spaces. Living out this vision extends beyond our manufacturing lines to our employees, communities and the environment.

As part of our commitment to the environment, we focus on reducing waste while using resources more efficiently and transforming manufacturing byproducts into valuable resources. Our Ecoblueprint™ strategy is our public commitment to completing three goals by 2020:

- Reduce greenhouse emissions by 20%;
- Reduce operational waste to landfills by 50%; and,
- Conduct life cycle assessments of all product lines.

2. General Information

Product:	Cement Boards
Declaration owner:	USG México, S.A. de C.V. Av. Vasco de Quiroga #4800, Piso 5, Oficina 501, Santa Fe, Cuajimalpa de Morelos. Ciudad de México, México. C.P. 05348. Contact person: Gabriela González Alcaraz e-mail: gagonzalez@usg.com.mx
Description of the construction product:	USG DUROCK® and USG DURACRETE® have a Portland cement core and are laminated with a polymerized fiberglass mesh on both sides. They provide a solid base for ceramic and marble tiles, quarried stones, fine bricks and textured or painted finishes. USG DUROCK® and USG DURACRETE® are the best solution for areas that have high levels of relative humidity or that are in direct contact with water.
Declared Unit:	1 m² of cement board.
Construction product identification:	Central Product Classification: CPC 54 Construction Services V2
Description of the main product components and/or materials:	USG DUROCK® and USG DURACRETE® cement boards may contain materials such as: Cement, aggregates, gypsum, perlite, polymerized fiberglass mesh and others.
Life cycle stages not considered:	Distribution, installation, use, end of life.
Content of the declaration:	This EPD is based on information modules that do not cover the aspects of use and end of life of the product. It contains in detail, for Module A1, A2 and A3: • Product definition and physical data • Information about raw materials and origin • Specifications on product manufacturing • Notes on product processing • LCA based on a declared unit, cradle-to-gate • LCA results • Evidence and verifications
For more information consult:	www.usg.com
Site for which this EPD is representative:	Manufacturing Plant 1) USG Monterrey Plant. Carretera a Monclova Km 15, Camino a la Laguna km 2.5, El Carmen, Nuevo León, México.
Public intended:	B2B (Business to Business)

3. Product description

USG DUROCK® and USG DURACRETE® are the best solution for areas that have high levels of relative humidity or that are in direct contact with water.

USG DUROCK® and USG DURACRETE® have a Portland cement core and are laminated with a polymerized fiberglass mesh on both sides. They provide a solid base for ceramic and marble tiles, quarried stones, fine bricks and textured or painted finishes.

4. Content declaration

USG DUROCK® cement boards contain materials shown in Table 1.

Element	Typical content
Cement	55%
Aggregates	26%
Land Plaster	2%
Perlite	7%
Fly Ash	5%
Fiberglass mesh	4%
Others	1%

Table 1. Typical content of USG DUROCK® cement boards

USG DURACRETE® cement boards contain materials shown in Table 2.

Element	Typical content
Cement	46%
Aggregates	43%
Land Plaster	3%
Fly Ash	5%
Fiberglass mesh	3%
Others	>0%

Table 2. Typical content of USG DURACRETE® cement boards

5. LCA Rules

Environmental potential impacts were calculated according to EN 15804:2012 and PCR 2012:01 Construction products and construction services Version 2.3 (2018-11-15). This EPD is in accordance with ISO 14025:2006.

Environmental potential impacts were calculated through the Life Cycle Assessment (LCA) methodology, according to ISO 14040:2006 and ISO 14044:2006. An external third-party verification process of the EPD was conducted according to General Program Instructions for the International EPD® System Version 3.0. Verification includes a documental review and validation of both the underlying LCA study and documents describing additional environmental information that justify data provided in the EPD.

5.1. Declared unit

1m² of cement board.

5.2. System boundary

Potential environmental impacts were calculated according to EN 15804:2012 and PCR 2012:01 Construction products and construction services Version 2.3 (2018-11-15). The declared EPD is a "Cradle-to-gate EPD" according to ISO 14025:2006. The following Table 3 describes the scope of the inventory performed in the LCA.

Life cycle environmental information of USG cement boards									
	Product stage		Construction	process stage	Use stage	End of life stage			
A1	A2	A3	A4	A5	B1 - B7	C1 - C4			
Extraction and processing of raw materials, generation of electricity and fuels	Transportation of raw materials to the manufacturing site of cement board and internal transportation	Manufacture of cement board, consumptions of materials for packaging of finished product and auxiliary materials. Air emissions and waste generation	Product distribution	Construction and installation	Use Maintenance Repair Replacement Refurbishment Operational energy use Operational water use	De-construction, demolition, transport, waste processing, disposal			
X	X	X	MND	MND	MND	MND			

Other environmental information
Reuse recovery stage
D
Re-use- Recovery- Recycling- potential
MND

Cradle-to-gate Declared unit

These stages are not considered in this study, since they are cradle-to-grave stages

Table 3. Product system of USG cement boards

^{*}Included Module = x *MND = Module Not Declared

A description of information modules is included in Table 4.

A1) Raw material supply

Production and processing of cement, aggregate and perlite.

Production and processing of additives.

Fiberglass mesh production.

Production of packaging materials for raw materials, such as plastic bags, cardboard and wood.

Generation and distribution of national electricity.

Production and processing of natural gas consumed in manufacturing.

A2) Transportation

Transportation of cement.

Transportation of additives.

Transportation of raw materials of finished product packaging.

Transportation of natural gas.

Transportation of auxiliary materials.

A3) Manufacturing

Water consumption.

Production of maintenance materials such as lubricating oil and textiles.

Production of finished product packaging materials.

Air emissions generated in the manufacturing process of USG.

Generation of waste for recycling, for confinement and for landfill.

Transportation of waste to final disposal sites.

Table 4. Description of information modules included in this EPD

5.3. Description of the manufacturing process

The manufacturing process is described in Figure 1. The cement boards are manufactured from Portland cement, which is not affected by water and is very resistant; they are made by means of a continuous process of mixing Portland cement with aggregates, reinforced with a fiberglass mesh coated with polymers, which completely covers the edges, as well as the front and back surfaces by means of a patented process. The ends have straight cuts.

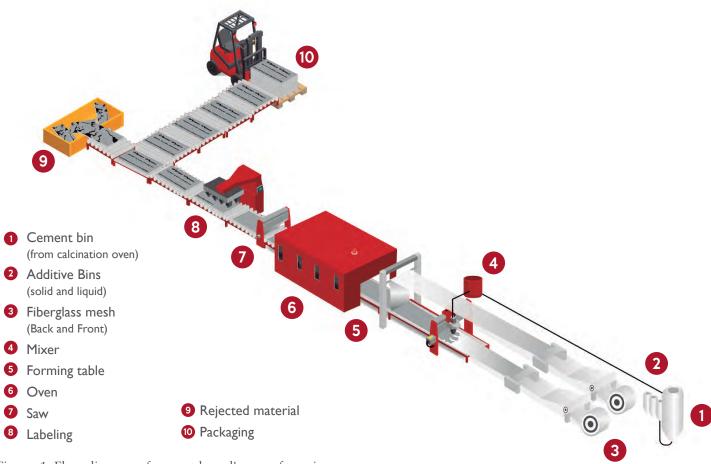


Figure. 1. Flow diagram of cement board's manufacturing process

5.4. Assumptions

The data set for Mexican electricity is part of the Mexicaniuh database and was created by CADIS with direct data from the CFE (Comisión Federal de Electricidad, Mexico's Federal Electricity Company). Electricity generation in Mexico is divided as follows: 36% thermoelectric, 12% coal-fired, 2% geothermal, 1% electric, 12% hydroelectric, 33% combined cycle technology, and 4% nuclear power (SENER, 2017).

In the year 2017, the loss for transmission and distribution of electric energy was 11% (SENER, 2017).

For secondary data and when it was not possible to obtain direct information from the company, the life cycle databases Mexicaniuh and Ecoinvent 3.3, in their Allocation Recycled Content version, were used.

For this study, the generic information obtained from the Ecoinvent 3.3 database has the following characteristics:

- The information is used as a world average, excluding Europe (RoW).
- It is meant to be a technological equivalence to that used by USG providers.

5.5. Cut-off criteria

The PCR document establishes that a minimum of 95% of the total flows (matter and energy) in modules A1 and A3 must be included in the LCI (PCR, 2017). In order to include the relevant data, the minimum established by the PCR was met, leaving out of the scope of this study, the company's infrastructure, the activities related to the transportation of employees and administrative activities developed by employees, as well as substances related to the corrective and preventive maintenance of the production machinery; spare parts and elements of the personal protection equipment are excluded.

5.6. Allocation

No allocations were made to the input or output data of the cement boards since USG does not report co-products during its internal manufacturing processes, or other situations that require allocation.

5.7. Time representativeness

Direct data obtained from USG is representative for 2017.

5.8. Data quality assessment

Data quality assessment per information module is provided in Tables 5, 6 and 7.

Table 5.Raw material supply Module A1 data quality assessment											
Data	Temporary coverage	Geographic coverage	Technological coverage	Precision	Completeness	Representativeness	Consistency	Reproducibility	Sources of information	Measured or estimated	Uncertainty
Cement, solid and liquid additives consumption	2017	Mexico	Modern	✓	✓	✓	✓	✓	Company data	M	1.05
Cement production	1996 - 2016	Ecoinvent adapted	Modern	✓	✓	•	✓	✓	Ecoinvent 3.3. adapted	M&E	Uncertainty provided by Ecoinvent database 3.3
Solid and liquid additives production	1980 - 2016	Worldwide average based on Europe	Worldwide average based on Europe	✓	✓	•	✓	✓	Ecoinvent 3.3	M&E	Uncertainty provided by Ecoinvent database 3.3
Fiberglass mesh (upper and lower) consumption	2017	Mexico	Modern	✓	✓	✓	✓	✓	Company data	M	1.05
Production of fiberglass mesh (upper and lower)	1980 - 2016	Worldwide average based on Europe	Worldwide average based on Europe	✓	✓	•	✓	✓	Ecoinvent 3.3	M&E	Uncertainty provided by Ecoinvent database 3.3
Electrical energy consumption for board's manufacture	2017	Mexico	Modern	✓	✓	✓	✓	✓	Company data	M	1.05
Natural gas consumption for board's manufacture	2017	Mexico	Modern	✓	✓	✓	✓	✓	Company data	M	1.05
Fuel consumption and emissions related to the generation and distribution of electricity in Mexico	2017	Mexico	Mix for México	✓	✓	✓	✓	✓	Mexicaniuh	M&E	Uncertainty provided by Mexcaniuh
Electricity consumption and generation of emissions related to natural gas production in Mexico	2017	Mexico	Mix for Mexico	✓	✓	✓	✓	✓	Mexicaniuh	M&E	Uncertainty provided by Mexcaniuh
Consumption of raw material packaging materials	2017	Mexico	Modern	✓	✓	✓	✓	✓	Company data	M&E	1.05
Manufacture of raw material's packaging materials	1980-2016	Worldwide average based on Europe	Worldwide average based on Europe	✓	✓	•	✓	✓	Ecoinvent 3.3	M&E	Uncertainty provided by Ecoinvent database 3.3

M&E: Measured and Estimated, M: Measured, E: Estimated

Data of Ecoinvent
 Worldwide average based on Europe

Table 6. Transportation Module A2 data quality assessment Representativeness Reproducibility Completeness **Technological** Measured or Consistency information Temporary Geographi Sources of estimated coverage coverage Precision Distance of cement Company 1.05 2017 NA transport, solid and Mexico Μ data liquid additives Company Distance of fiberglass Μ 1.05 2017 Mexico NA data mesh transportation Distance of natural gas Company Μ 2017 Mexico NA 1.05 transportation data Distance of transportation of raw Company 2017 Mexico NA M&E 1.05 materials packaging data materials Distance of transportation Company Mexico NA 2017 M&E 1.05 of finished product data packaging materials Distance of material Company M&E Mexico NA 1.05 2017 transportation for data maintenance Materials and energy consumption, and Worldwide Uncertainty Worldwide emissions related to the provided by average 1992 -2014 M&E average based Ecoinvent 3.3 transportation Ecoinvent based on on Europe database 3.3 requirements of raw Europe materials and auxiliary inputs

M&E: Measured and Estimated, M: Measured, E: Estimated

Worldwide average based on Europe

Table 7. Manufacture Module A3 data quality assessment Representativeness Reproducibility Completeness **Technological** Measured or Consistency nformation Uncertainty Geographic Femporary Sources of estimated coverage coverage Precision Data 1.05 Modern Company data Water consumption 2017 Mexico M Wax paper 2017 Mexico Modern Company data 1.05 M consumption Materials consumption 1.05 2017 Mexico Modern Company data M for maintenance Finished product 1.05 2017 Company data Mexico Modern M packaging materials consumption Worldwide Worldwide Uncertainty Manufacturing of 1990 - 2016 average based Ecoinvent 3.3 average based M&E provided by materials for on Europe on Europe Ecoinvent maintenance database 3.3 Worldwide Manufacture of finished Worldwide Uncertaintyprovided M&E 1990 - 2016 Ecoinvent 3.3 average based product packaging by Ecoinvent average based on Europe database 3.3 materials on Europe M Company data 2017 Modern 1.05 Air emissions Mexico Modern Company data Waste generation 1.05 2017 Mexico Waste treatment Uncertainty provided Worldwide processes, Worldwide M&E Ecoinvent 3.3 by Ecoinvent 1990 - 2016 average based consumptions of average based database 3.3 on Europe materials and related on Europe energy. Distance of waste 2017 Modern M 1.05 Mexico Company data transportation to final disposal site Material and energy Worldwide Worldwide consumption, and Uncertainty provided ✓ 1992 - 2014 average based M&E average based Ecoinvent 3.3 emissions related to by Ecoinvent on Europe on Europe waste transportation database 3.3 requirements

M&E: Measured and Estimated, M: Measured, E: Estimated

Worldwide average based on Europe

6. Environmental performance

SimaPro 8.4 was used for the Life Cycle Impact Assessment. The analysis results of the environmental performance of the USG cement boards are shown below.

6.1. Use of resources

Parameters describing the use of resources were evaluated with the Cumulative Energy Demand method version 1.09 (Frischknecht et al. 2007), except for the indicator of net use of fresh water, that was evaluated with Recipe 2016 Midpoint (H) version 1.00 (Huijbregts et al. 2017). The detailed description of the use of resources is provided in Table 8 for USG DUROCK® and Table 9 for USG DURACRETE®.

Table 8. Resource Indicators per 1m ² of USG DUROCK® cement board manufactured								
Parameter	Unit	Total	A1) Raw material supply	A2) Transportation	A3) Manufacturing			
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ	11.4	2.80	0.17	8.48			
Use of renewable primary energy as raw materials	MJ	0	0	0	0			
Total use of renewable primary energy resources	MJ	11.4	2.80	0.17	8.48			
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	63	44	14	5			
Use of non-renewable primary energy used as raw materials	МЈ	0	0	0	0			
Total use of non-renewable primary energy resources	MJ	63	44	14	5			
Use of secondary material	kg	0	0	0	0			
Use of renewable secondary fuels	МЈ	0	0	0	0			
Use of non-renewable secondary fuels	МЈ	0	0	0	0			
Net use of fresh water	m³	0.04	0.02	2.69E-03	0.01			

Table 9. Resource Indicators per 1m² of USG DURACRETE® cement board manufactured

Parameter	Unit	Total	A1) Raw material supply	A2) Transportation	A3) Manufacturing
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	WJ	14.1	2.90	0.24	10.9
Use of renewable primary energy as raw materials	MJ	0	0	0	0
Total use of renewable primary energy resources	MJ	14.1	2.90	0.24	10.9
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	71	46	19	6
Use of non-renewable primary energy used as raw materials	MJ	0	0	0	0
Total use of non-renewable primary energy resources	MJ	71	46	19	6
Use of secondary material	kg	0	0	0	0
Use of renewable secondary fuels	MJ	0	0	0	0
Use of non-renewable secondary fuels	MJ	0	0	0	0
Net use of fresh water	m³	0.04	0.02	3.83E-03	0.01

6.2. Potential environmental impact

Parameters describing potential environmental impacts were calculated using the CML-IA method version 3.04 (Guinee et al. 2001; Huijbregts et al. 2003; Wegener et al. 2008), as implemented in SimaPro 8.4. Water scarcity potential was calculated using the AWARE method (Boulay et al. 2018). These categories were included because they are mandatory according to PCR. Water scarcity is important in Mexican context because water availability varies in different regions of the country.

Environmental performance is provided in Figure 2 and Table 10 for USG DUROCK®. Figure 3 and Table 11 provide the environmental performance for USG DURACRETE®.

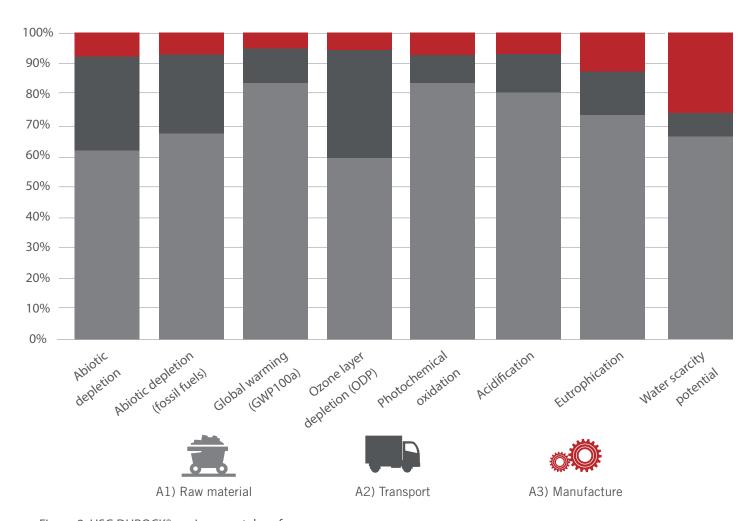


Figure 2. USG DUROCK® environmental performance

Table 10. USG DUROCK® environmental performance								
Impact Category	Unit	A1) Raw materials supply	A2) Transportation	A3) Manufacturing	Total A1 - A3	Module A4-I		
Abiotic	kg Sb eq	4.85E-06	2.10E-06	6.27E-07	7.58E-06			
depletion	%	64.0	27.7	8.3	100			
Abiotic depletion	MJ	41.7	13.5	5.12	60.3			
(fossil fuels)	%	69	22	8	100			
Global warming	kg CO₂ eq	6.54	0.84	0.36	7.74			
(GWP100a)	%	85	11	5	100			
Ozone layer depletion	kg CFC-11 eq	2.74E-07	1.58E-07	2.38E-08	4.55E-07			
(ODP)	%	60.1	34.6	5.23	100	MND		
Photochemical	kg C ₂ H ₄ eq	1.68E-03	1.45E-04	1.40E-04	1.96E-03			
oxidation	%	85	7	7	100			
Acidification	kg SO₂ eq	0.02	3.43E-03	1.75E-03	0.03			
reconceron	%	80	13	7	100			
Eutrophication	kg PO ₄ ³- eq	3.98E-03	7.67E-04	7.10E-04	5.46E-03			
240 pineadon	%	72.9	14.1	13.0	100			
Matar coarcity patantial	m³eq	1.09	0.04	0.47	1.60			
Water scarcity potential	%	68.2	2.66	29.1	100			

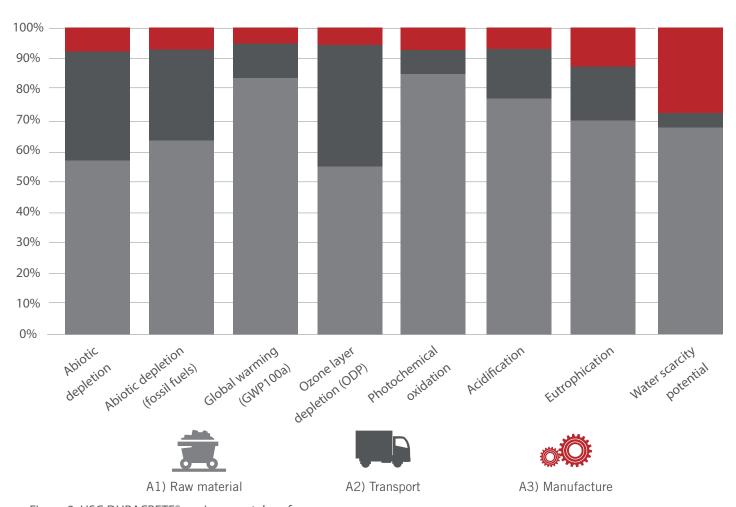


Figure 3. USG DURACRETE® environmental performance

	Table 11.	USG DURACRETE®	environmental	performance		
Impact Category	Unit	A1) Raw materials supply	A2) Transportation	A3) Manufacturing	Total A1 - A3	Module A4-D
Abiotic	kg Sb eq	4.77E-06	2.63E-06	7.20E-07	8.12E-06	
depletion	%	58.7	32.4	8.87	100	
Abiotic depletion	MJ	44.4	18.9	5.33	68.6	
(fossil fuels)	%	65	27	7.77	100	
Global warming	kg CO ₂ eq	7.34	1.16	0.40	8.90	
(GWP100a)	%	82	13	4	100	
Ozone layer depletion	kg CFC-11 eq	2.95E-07	2.19E-07	2.75E-08	5.42E-07	
(ODP)	%	54.4	40.5	5.08	100	MND
Photochemical	kg C ₂ H ₄ eq	1.79E-03	2.00E-04	1.57E-04	2.14E-03	IVIIND
oxidation	%	83	9	7	100	
Acidification	kg SO ₂ eq	0.02	4.73E-03	2.02E-03	0.03	
Acidification	%	77	16	7	100	
Eutrophication	kg PO ₄ 3- eq	4.30E-03	1.06E-03	8.22E-04	6.18E-03	
,	%	69.6	17.1	13.3	100	
Motor consituant and antial	m³eq	1.16	0.07	0.47	1.69	
Water scarcity potential	%	68.3	4.01	27.7	100	

6.3. Waste production

Environmental indicators describing waste generation were obtained from the LCI, except for background information, which was calculated using the EDIP 2003 method (Hauschild and Potting, 2005). Tables 12 and 13 show waste and other outputs generated during each information module.

Table 12. Waste and other outputs per 1m² of USG DUROCK® board raw material							
Output parameter	Unit	Total	A1) Raw material supply	A2) Transportation	A3) Manufacturing		
Hazardous waste	kg	5.75E-04	2.59E-05	7.68E-06	5.41E-04		
Non hazardous waste	kg	1.32	0.17	0.80	0.35		
Radioactive waste*	kg	2.12E-04	1.13E-04	8.75E-05	1.11E-05		
Components for reuse	kg	0	0	0	0		
Materials for recycling	kg	0.10	0	0	0.10		
Materials for energy recovery	kg	0	0	0	0		
Exported electricity	MJ	0	0	0	0		
Exported heat	MJ	0	0	0	0		

^{*}No radioactive waste is produced during USG operation.

Table 13. Waste and other outputs per 1m² of USG DURACRETE® board raw material					
Output parameter	Unit	Total	A1) Raw material supply	A2) Transportation	A3) Manufacturing
Hazardous waste	kg	5.82E-04	2.71E-05	1.06E-05	5.44E-04
Non hazardous waste	kg	1.81	0.18	1.27	0.36
Radioactive waste*	kg	2.61E-04	1.25E-04	1.22E-04	1.33E-05
Components for reuse	kg	0	0	0	0
Materials for recycling	kg	0.10	0	0	0.10
Materials for energy recovery	kg	0	0	0	0
Exported electricity	MJ	0	0	0	0
Exported heat	MJ	0	0	0	0

^{*}No radioactive waste is produced during USG operation.

7. Verification and registration

CEN standard EN 15804 served as the core PCR					
Program:	International EPD® System www.environdec.com EPD®				
. rogia	EPD registered through the fully aligned regional program/hub: EPD Latin America www.epdlatinamerica.com LATIN AMERICA EPD ®				
Program operator:	EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden EPD Latin America Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile. Mexico: Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, Tlalnepantla de Baz, Estado de México, México, C.P. 54050				
EPD registration number:	S-P-01424				
Issue date:	2019-08-30				
Validity date:	2024-08-27				
Revision date:	2019-08-28				
Reference year of data:	2017				
Geographical scope:	Mexico				
Product group classification:	Central Product Classification: CPC 54 Construction Services V2				
PCR:	PCR 2012:01 construction products and construction services. Version 2.3 (2018-11-15)				
PCR review was	The Technical Committee of the International EPD®				
conducted by:	System. Chair: Massimo Marino.				
	Contact via info@environdec.com				
Independent verification	EPD process certification (Internal)				
of the declaration data, according to ISO 14025:2006.	EPD verification (External)				
Third-party verifier:	Rubén Carnerero Acosta				
	r.carnerero@ik-ingenieria.com				
Accredited or approved by:	The International EPD® System				
Procedure for follow-up of data during EPD validity involves third-party verifier:	Yes No				
LCA:	This environmental product declaration was carried out based on the Life Cycle Assesment study of Cement Boards (González M, Chargoy JP, Luque C, Vulling M, Martínez A, Hernández M, 2019).				

EPDs within the same product category but from different programmes may not be comparable. The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs of construction products may not be comparable if they do not comply with EN 15804.

8. Contact information

EPD owner:

ES TU MUNDO. CONSTRÚYELO.™

USG México, S.A. de C.V. Av. Vasco de Quiroga #4800 Piso 5, Oficina 501 Santa Fe, Cuajimalpa de Morelos Ciudad de México, México C.P. 05348 www.usg.com

Contact person: Gabriela González Alcaraz gagonzalez@usg.com.mx LCA author

Center for Life Cycle Assessment and Sustainable Design – CADIS

Bosques de Bohemia 2 #9
Bosques del Lago
Cuautitlán Izcalli, Estado de México
México
C.P. 54766
www.centroacy.mx

LCA study: Análisis de ciclo de vida de tableros de cemento.

LCA Authors: González M, Chargoy JP, Luque C, Vulling M, Martínez A, Hernández M.

Contact person: Juan Pablo Chargoy jpchargoy@centroacv.mx Program operator (PO):

EPD International AB

Box 210 60, SE-100 31, Stockholm, Sweden. www.environdec.com

info@environdec.com

EPD registered through the fully aligned regional program/hub:

EPD Latin America www.epd-latinamerica.com

Chile:

Alonso de Ercilla 2996, Ñuñoa, Santiago Chile.

México:

Av. Convento de Actopan #24 Int. 7A Col. Jardines de Santa Mónica Tlalnepantla de Baz Estado de México, México C.P. 54050

9. References

•Boulay AM, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Valerie-Pastor A, Ridoutt B, Oki T, Worbe S, Pfister S (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment. Volume 23, Issue 2, pp 368–378. https://doi.org/10.1007/s11367-017-1333-8 • CML (2018) Consulted on line on November, 2018 at: http://cml.leiden.edu/software/data-cmlia.html

•Frischknecht R., Jungbluth N., et.al. (2003). Implementation of Life Cycle Impact Assessment Methods. Final Report. Ecoinvent 2000, Swiss Centre for LCI. Duebendorf, CH, www.ecoinvent.ch

•Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E (2016). Introduction to LCA with SimaPro. PRé. Available online at:

 $https://www.pre-sustainability.com/download/SimaPro8IntroductionToLCA.\\ pdf$

•González M, Chargoy JP, Luque C, Vulling M, Martínez A, Hernández M (2019) Análisis de ciclo de vida de tableros de cemento. Centro de Análisis de Ciclo de Vida y Diseño Sustentable (CADIS). México.

•Guinee, J.B., Marieke Gorree, Reinout Heijungs, Gjalt Huppes, Rene Kleijn, Lauran van Oers, A. Wegener Sleeswijk, S. Suh, H.A. Udo de Haes, H. de Bruijn, R. van Duin, M.A.J. Huijbregts (2001). Handbook on Life Cycle Assessment, Operational guide to the ISO standards. Volume 1, 2a, 2b and 3.

•Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal on Life Cycle Assessment. Volume 22, Issue 2, pp 138-147. https://doi.org/10.1007/s11367-016-1246-y

•Huijbregts, M.A.J. LCA normalisation data for the Netherlands (1997/1998), Western Europe (1995) and the World (1990 and 1995).

•IMNC (2008) NMX-SAA-14025-IMNC-2008. Gestión ambiental-etiquetas y declaraciones ambientales-declaraciones ambientales tipo III-principios y procedimientos.

•IMNC (2008) NMX-SAA-14040 Gestión ambiental - Análisis de ciclo de vida - Principios y marco de referencia. México, D.F.: IMNC.

•IMNC (2008) NMX-SAA-14044 Gestión ambiental - Análisis de ciclo de vida - Requisitos y directrices. México, D.F.: IMNC

•ISO 14040 (2006) Environmental management - Life cycle assessment - Principles and framework. Switzerland: International Organization for Standardization.

•ISO 14044 (2006) Environmental management - Life cycle assessment - Requirements and guidelines. Switzerland: International Organization for Standardization.

•ISO/TC 207 (2006) ISO 14025 Environmental labels and declarations. Type III environmental declarations. Principles and procedures.

•Product Category Rules - PCR (2017) 2012:01 Construction products and construction services. Version 2.3 published on November 15, 2018. Available online at: http://www.environdec.com/es/

•SENER (2017) Balance Nacional de Energía 2017. Available online at: https://www.gob.mx/cms/uploads/attachment/file/414843/Balance_Nacional_de_Energ_a_2017.pdf

•USG México. https://www.usg.com

•Wegener Sleeswijk, A., L. van Oers, J. Guinee, J. Struijs and M. Huijbregts (2008). Normalisation in Product Life Cycle Assessment: An LCA of the Global and European Economic Systems in the year 2000.

•WULCA (2014) Missions & Goals. Water Use in Life Cycle Assessment. Available online at: http://www.wulca-waterlca.org/mission.html